Clustering Phenomena in Dropout

David Kewei Lin Jensen Jinhui Wang Phil Chen
linkewei@stanford.edu wangjh97@stanford. edu philhc@stanford.edu
Abstract

Despite its prevalence, Dropout lacks a conclusive explanation behind its regularization effects. In this paper, we verify
that applying Dropout is akin to training a stochastic neural network. We then analyze the variance across models
to quantify the regularization properties of Dropout and explain the observed trends from the stochastic perspective.
Subsequently, we propose that the network produces similar nodes to adapt to the stochastic training process, resulting
in a clustering phenomenon that reduces model complexity. Our experiments culminate in a compression scheme that
converts the trained stochastic network into a smaller, deterministic network for prediction.

1 Introduction

Dropout, as introduced in |Srivastava et al.|[2014], describes a form of regularization where in the training phase, nodes are randomly
“dropped” with some probability p (with optimal values occurring between 0.2 and 0.5). The rationale for this was to simulate the
simultaneous training of many model combinations while keeping the training process relatively efficient.

Given a fixed feed-forward network with N ordered nodes, we associate each vector M € R¥ a modified network with the output of each
node scaled by the corresponding element in the vector. Then, Dropout randomly samples models M from a model distribution M that is
restricted to the set of binary masks {0, 1}?V, where each component is independently drawn from Bernoulli(1 — p) (p is the Dropout
rate). Although M is sampled as a binary mask, it is often useful to consider M with elements of R (e.g. scaling during prediction time).

Given input z, output o(x; 8, M) (where model parameters 6 will be omitted for simplicity), ground truths y, and loss £(o, y), the Dropout
training procedure approximates minimizing the loss of Es.a[¢(o(x; M), y)] (Srivastava et al.| [2014]). We verify this stochastic
interpretation through our experiments and suggest an alternate prediction scheme that samples the network with Dropout still enabled.
Subsequently, we propose that a neural network may adopt a mechanism of replicating similar nodes in response to Dropout. We verify
this hypothesis in a series of experiments, which culminates in a novel compression scheme that clusters the proposed similar nodes to
produce a smaller, deterministic network after training.

2 Related work

Gal and Ghahramanil [2015} 2016a] reinterpret Dropout as approximate variational inference in a Bayesian neural network, where the
approximate variational distribution (based on the Dropout model distribution) is made close to the true latent distribution by minimizing
the evidence lower bound. In|Gal and Ghahramanil [2016b], their theoretical results motivate novel dropout techniques in RNNs such as
dropping words at random throughout the input sentence to improve on an RNN model to achieve state-of-the-art language modelling
with the Penn Treebank. Kingma et al.|[2015] also apply variational dropout techniques that provide a Bayesian interpretation to Gaussian
dropout. More specifically, they show that Gaussian dropout is equivalent to sampling the output of each layer from a Gaussian distribution
(before applying activations) and obtain efficient estimators for the gradient of the variational lower bound via the reparameterization trick.

Hernandez-Lobato and Adams|[2015] tackle the challenge of scalability of Bayesian neural networks by using their interpretation of
probabilistic neural network models to propose a probabilistic backpropogation algorithm, which updates the parameters of their Gaussian
beliefs that minimize the KL divergence. Similarly, Tang and Salakhutdinov|[2013]] propose a stochastic feedforward neural network
(SFNN) with hidden layers with both deterministic and stochastic variables with a generalized EM training procedure on their parameters.
They reason that SFNN have attractive properties including being able to have distributed code to represent an exponential number of
mixture components in output space and train with the standard backpropogation algorithm as in standard feed-forward neural networks.

These approaches all revolve around interpreting dropout through a Bayesian approach and minimizing the KL divergence between their
approximated distribution and the empirical distribution. In our project, we also use sampling to acknowledge the stochasticity of the
network, and we adopt the interpretation of feed-forward networks with Dropout as SFNNs.

3 Methods

We use simple feed-forward networks with 3 hidden layers on the MNIST dataset and a final output layer with 10 units (corresponding to
the number of prediction classes). The output logits are then passed through a softmax layer before the cross-entropy loss with the labels
is computed. Such a rudimentary model was employed to ensure that the experiments are more controlled and the results can be explained
with fewer assumptions.

3.1 Test-time sampling

As pointed out in|Wan et al.|[2013]], the fundamental approximation made by Dropout by renormalizing at prediction time is

Enrem[l(o(z; M), y)] = £ (exp(Epsom[log o(x; M)]),y)) (for cross-entropy loss ¢, which is linear in log o)
~ UEnr~mlo(z; M)],y) 1)
~ L(o(z; Enrnra[M]), y))

is valid assuming that o(x; M) take similar values across M, but (2)) is not guaranteed to hold as o(z; M) may contain non-linearities
(which are nonlinear in M).

In section 4.1 we attempt to measure the accuracy of the Dropout linearity assumption by comparing the results of the scaled model
(Mrest = Eps~pm[M], as per standard Dropout) and the actual model combination approximated by drawing n model samples M ~ M
and then computing the output as o(z, Myes;) = exp(L 37" [log o(x; M;)]). It is important to note that only a single model is trained
though different prediction methods are used.

3.2 Metrics

The default metric used is test accuracy. However, to investigate the purported regularization effects, we also consider various measures of
variance. Model variance is defined as the variance of the predictions across models trained on a subset of examples average across the 10
output logits. Mean sampling standard deviation (MSTD) is the mean of the standard deviations of the logits produced by the 10 output
nodes across different samples. These are specifically investigated in subsections .2 and [f.3.2] respectively.

4 Experiments

4.1 Dropout minimizes the expected loss of a SFNN

4.1.1 Sampling versus Scaling

A three-layer network, with 100 units and an identical Dropout rate in each hidden layer, was trained and our sampling method was
compared to the conventional scaling procedure in the prediction phase. As expected, the models perform significantly better at test time
than at training time, regardless of whether it samples—indicating that a post-processing step after training is indeed necessary. Sampling
at test time generally performs better than scaling (especially at higher Dropout rates), supporting the hypothesis that Dropout training
actually trains a stochastic neural network that is suited for sampling. That said, the high performance of the model without sampling
suggests that relatively scaling the weights at test time by m produces similar outputs as sampling does.

Vanilla Dropout Inverted Dropout
1 1
0.8 0.8
Legend
g 0.6 0.6 [l Training accuracy
§ Testing accuracy without sampling
< 04 0.4 Testing accuracy with sampling
0.2 0.2
0 0 LI
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Dropout rate Dropout rate

Figure 1: Effect of Dropout rate and type on accuracy during training and testing. We trained and tested models with 100 hidden units on
each of the three hidden layers and the same Dropout rate on each of these hidden units.

4.1.2 Varying Batch Size
In order to minimize the expected loss over the family M, the gradient used in a stochastic training update, given example z(*), should be
Vol* (0) = Exrnma[Vol(o(a™; M), y)]

However, Dropout only samples a single model from M during training time for each example (), which is surely not representative of
the expectation. The actual batch gradient computed is

Vol(0) = > Vol(o(z™; M;), y)
i=1

where M; ~ M. If we assume VM € M, Vyl(o(z®, M)) points in the same direction for all training examples (9, V¢(6) is akin to
a point estimate of V¢*(6). Thus, if Dropout is indeed training a stochastic network, we would expect the performance of the trained
model to scale with batch size as the point estimates will be more accurate.

It can be seen from the results summarized in Table[I] that the test accuracy of identical three-layer networks, with and without Dropout,
generally increases with batch size. However, the effect of increasing batch size is more significant in the case of the network with
Dropout. Furthermore, the accuracy fluctuations for the network — in particular, with batch size 128 — with Dropout shows that it is more
sensitive to batch size than its counterpart without Dropout, suggesting the presence of an underlying stochastic network.

Table 1: Experimental Results of Varying Batch Size in a Three-Layer Network

(a) With 0.4 Vanilla Dropout (b) Without Dropout (c) Hyperparameters
Batch Steps Test Acc Batch Steps Test Acc Hidden units [100, 100, 100]

16 20000 0.765 16 20000 0.891 N Dg"PO“ft rates [0.4, g(-)‘(‘)’ 0.4]
3210000 0.787 32 10000 0.897 umber of sampres

64 5000 0.797 64 5000 0.892

128 2500 0.697 128 2500 0.907

256 1250 0.815 256 1250 0.906

512 625 0.836 512 625 0.918

4.2 Effect of Dropout on model variance

From the perspective of learning theory, Dropout as an effective form of regularization must reduce the variance of the model. To calculate
model variance, we train 10 models with parameters 61, 02, ..., 01 respectively (keeping architectures and hyperparameters constant),
each on 10,000 randomly selected training examples of the MNIST dataset (out of 60,000 total). Then we compute the mean variance of
the model predictions on the test set, calculated as

1 n 1 10 ‘ 2
Varg = - Z 10 Z (EMNM [o(z; M, 0;) — o(z(®); M)])
i=1 " j=1

where (), y(*) are the test examples and o(z(); M) = & 57,2 o(z(®; M, 6y,)).

Our experiments verify that the model variance with Dropout is significantly lower than without Dropout, and vanilla Dropout results in
the lowest variance (Figure2)). Interestingly, sampling the model with vanilla dropout at test time results in much lower model variances
than inverting. To explain this result heuristically, we use the interpretation in Tang and Salakhutdinov|[2013]] of dropout models as a
distribution from an exponential number of mixture components. We know dropout trains € to minimize expected loss over the family M.
Inverting at test time is similar to selecting a single component My(6) € M(0). Then if all M;(6) € M (6) have approximately equal

variances, any sample - 2?21 M, (0) will satisfy Var (% Z?:l M;, (9)) < Var My () with high probability.

4.3 Dropout clusters neurons

We propose that a neural network may produce similar nodes in response to the stochastic training imposed by Dropout (established in
Section[d.T). This leads to a self-correcting mechanism where a node is able to compensate for another similar dropped node. Concretely,
the network may learn to take the average output of groups of similar nodes—a plausible scheme considering how the variance of the
output scales inversely with the number of similar nodes such that the network becomes more robust to dropping with more replicates.

Dropout rates: [0, 0, 0.2] Dropout rates: [0, 0.2, 0.2]

0.2 0.2
Q
o
c
Ko
I
>
o
o
[o}
=
c
©
o} .
= I Legend

I 5 training epochs
2 > 10 training epochs
--- No Dropout, 5 training epochs
a --- No Dropout, 10 training epochs
& 15 15 p g ep
—
>
a
2
g 1 !
[}
a
1%
8 0.5 0.5
c
©
o}
= 0 0
Dropout type Vanilla Inverted Vanilla Inverted Vanilla Inverted Vanilla Inverted
Sampling Yes Yes No No Yes Yes No No

Figure 2: Comparison of model variance and cross-entropy loss at test time for models with different Dropout rates, Dropout types,
training hyperparameters, and testing configurations. On the left are models with Dropout only in the third hidden layer, and on the right
are models with Dropout in the second and third hidden layers.

4.3.1 Identifying Node Similarity through Clustering

Observe that a network node is represented by both an incoming weight vector and an outgoing weight vector such that node similarity
naturally refers to similarity with respect to both of these vectors. As such, groups of similar nodes in a dropped layer can be identified
by first individually clustering the rows of the weights of the dropped layer (incoming weights) and the columns of the weights of the
following layer (outgoing weights). Subsequently, subsets of the nodes belonging to the same cluster in both clusterings can be identified
as similar nodes. This method is preferable to crudely concatenating the incoming and outgoing weights together and performing a single
clustering as it accommodates the possibly different dependencies on the incoming and outgoing weights.

We quantified the degree of node similarity by computing the Rand Index (Rand|[1971]) between the two clusterings obtained for different
Dropout rates in a fixed three-layer network. A Rand Index of 0 indicates absolute dissimilarity between two clusterings while 1 indicates
complete similarity. It can be seen from Table2]that the Rand Index generally increases with larger Dropout rates, suggesting that Dropout
indeed introduces similar nodes.

Table 2: Rand Index for Different Dropout Rates

Dropout 00 02 04 06 08
Rand Index | 0.65 0.81 0.77 0.82 0.84

4.3.2 Mean Sampling Standard Deviation with hidden units

Under the hypothesis that dropout results in clustered neurons, we propose a model to predict the relationship between the size of the
hidden layers and the mean sampling standard deviation (MSTD).

Suppose X1, ..., X}, are the normalized outputs of a hidden layer of size h with k& o h* clusters for some « € (0,1). Assuming the
variance of the output g is proportional to the variance of the mean of X;, we have

h

shox\ 1 b 12 1
Var(j) < E (“,;) = SE[D XP+2) XX =1+ i XXy | =EpuX; X+ 0 (h> 3)
i=1 7k 7k

Now we model the C1, .. ., Cj, clusters as follows: if X;, X; € C,, for some ¢ # j, then the covariance E(X;X;) = o and if they do
not belong to the same cluster then the covariance E(X;X ;) = 0. Intuitively, this assumes that outputs of neurons in the same cluster

are correlated and outputs of neurons in different clusters are not. If we have the h neurons evenly distributed into k clusters, then the

probability that two neurons are in the same cluster is % and E;., X; Xy, = %” Plugging this into the equation (3) yields

~ k 1 k—1
Var(g) « 7 +0 (h) x h “)

To verify this, we used a three-layer network with a fixed Dropout rate enabled only on the first hidden layer and measured the effect of
the number of units A in the first hidden layer on the MSTD (Figure . The fitted line very strongly suggests MSTD ﬁ supporting
our clustering perspective to Dropout’s inner mechanism.

0.35 2 -
. g \
. 03 2 14 .
S . k) N
® 9] .
3 025}, S e AN
hel . E
‘E el
5 o2 - £ 8
=4 wn
il 2 \
o 015 g -2 \.
= & N
£ 2
5 o1 ¥ 22 RN
0.05 2.4 A
0 500 1000 1500 3 4 5 6 7 8

Number of hidden units Log(number of hidden units)

Figure 3: Comparison of sample variance of model for different number of hidden units in the first hidden layer. The left contains the
normal plot and the right contains the log-log plot, with a best-fit line of y = —0.3541x + 0.0958 (R? = 0.98)

4.4 Model compression using clustering

The perspective of Dropout replicating nodes naturally leads to the following conversion algorithm from a stochastic to deterministic
network. Firstly, the weights of a dropped layer and its following layer are each clustered into C' groups using k-means clustering. From
the two clusterings produced, we select the one with better empirical accuracy and compute the mean weight vector of each cluster in the
chosen clustering for both weights. This produces two weight vectors for each cluster which can be associated with a compressed node
in a new network—one denoting the incoming weight into a node of the dropped layer and another denoting the outgoing weight. As
post-processing, both weights need to be scaled to account for the change in the number of nodes. Intuitively, the C' compressed nodes are
each representative of their corresponding clusters of similar nodes.

Table 3: Clustering Compression in a Three-Layer Network with Varying Units in First Layer
(a) With 0.5 Vanilla Dropout (b) Without Dropout

Units Test Acc Compressed Units Compressed Test Acc Units Test Acc Compressed Units Compressed Test Acc

400 0.869 162 0.855 400 0.882 162 0.740
500 0.879 162 0.847 500 0.894 162 0.685
600 0.884 167 0.833 600 0.892 167 0.534
700 0.877 177 0.839 700 0.891 177 0.657

When the algorithm was tested, C' and the post-processing scaling factor were selected through linear search, as clustering criteria such as
the Bayesian information and Calinski-Harabasz criteria produced mixed results. As seen in Table 3} our scheme only leads to a negligible
decrease in evaluation accuracy, while significantly compressing the size of the network. As a control, similarly compressing an identical
network trained without Dropout leads to drastic decreases in evaluation accuracy, suggesting that Dropout indeed induces clusters.

5 Conclusion

Dropout, despite being a prevalent regularization technique, lacks a conclusive explanation of its inner workings. In this paper, we conduct
a series of experiments involving Dropout and suggest a possible mechanism behind Dropout from the perspective of stochastic neural
networks, explaining its regularization effects. In particular, we examine Dropout’s tendency to cluster nodes, introducing redundancies
that reduce model complexity. For future work, we propose deriving a more comprehensive and unified theoretical model that explains the
power relation between the number of hidden units and the MSTD as well as sampling’s effect on model variance. The effectiveness of
clustering compression could also be improved by only compressing groups of nodes that both clusterings agree on (as opposed to the
current scheme of selecting one).

References

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli approximate variational inference. arXiv preprint
arXiv:1506.02158, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference
on machine learning, pages 10501059, 2016a.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent neural networks. In Advances in neural information
processing systems, pages 1019-1027, 2016b.

José Miguel Hernandez-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning of bayesian neural networks. In International
Conference on Machine Learning, pages 1861-1869, 2015.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization trick. In Advances in Neural Information
Processing Systems, pages 2575-2583, 2015.

William M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846-850, 1971.
doi: 10.1080/01621459.1971.10482356. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Yichuan Tang and Ruslan R Salakhutdinov. Learning stochastic feedforward neural networks. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 530-538. Curran Associates, Inc., 2013. URL
http://papers.nips.cc/paper/5026-learning-stochastic-feedforward-neural-networks.pdf.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of neural networks using dropconnect. In Proceedings of the 30th
International Conference on International Conference on Machine Learning - Volume 28, ICML’13, pages I1I-1058-111-1066. JMLR.org, 2013. URL
http://dl.acm.org/citation.cfm?7id=3042817.3043055.

6 Contributions

All authors contributed equally to this work. David Lin contributed to most of the writeup, as well as suggestions for all the experimental components.
Jensen Wang created much of the experiments and writeup for clustering. Phil Chen created the experiments and writeup for model variance.

https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://papers.nips.cc/paper/5026-learning-stochastic-feedforward-neural-networks.pdf
http://dl.acm.org/citation.cfm?id=3042817.3043055

	Introduction
	Related work
	Methods
	Test-time sampling
	Metrics

	Experiments
	Dropout minimizes the expected loss of a SFNN
	Sampling versus Scaling
	Varying Batch Size

	Effect of Dropout on model variance
	Dropout clusters neurons
	Identifying Node Similarity through Clustering
	Mean Sampling Standard Deviation with hidden units

	Model compression using clustering

	Conclusion
	Contributions

